駿河湾深層水の取水海域における流動特性

Characteristics of Current Variations in the Intake Sea Area of the Suruga Bay Deep Seawater

黒山 順二1・筒井 浩之2,1・三森 智裕3,1・安川 岳志1・豊田 孝義1・中島 敏光1
Junji KUROYAMA, Hiroyuki TSUTSUI, Tomohiro MitSUMORI,
Takeshi YASUKAWA, Takayoshi Toyota, and Toshimitsu NAKASHIMA

Abstract

Shizuoka Prefecture has been promoted the project for effective usage of deep seawater in Suruga Bay. The intake pipes of the deep seawater at depths 397m and 687m were laid in Senoumi Basin off Yaizu in August 2000. In order to contribute to the promoting of the project, JAMSTEC carried out the mooring observation to grasp the characteristics of current variations in the deep seawater intake sea area off Yaizu for about 3 months from November 1999 to February 2000, when the construction laying of deep seawater had not started yet.

We analyzed the time series data obtained on the flow direction and velocity, and water temperature and salinity in the wide range of depths. The results indicated that strong tide variations occurred in the periods of half a day and one day and other variations occurred in the periods of order several or ten days in even the depths down to several hundred meters. Being averaged each velocity components over the whole period of the mooring observation, strong southwestward current was predominant in the surface layer of the depths up to about 250m, while weak northward counter current existed in the middle and deep layers. Being used mean and standard deviation of absolute velocity, it was suggested that periodic current variations in the deep layer were bigger than we had expected.

Key Words: Deep seawater, Suruga bay, Senoumi basin, mooring system, current variation

要 目

静岡県は、駿河湾における海洋深層水の有効利用事業として2000年8月に取水管の敷設を行い、駿津沖の石花海（せのうみ）海盆における深度397mおよび深度687mに海洋深層水取水口を設置した。海洋科学技術センターは当事業計画の効率的な推進に資するため、取水管工事着工以前の1999年11月8日から約3カ月間、駿津沖の深層水取水予定海域において、流動特性を把握する調査を実施した。

調査結果として、多層深くで得られた流速等の解析から、半日周期および1日周期の潮汐変動の他に、数日10日程度の周期的な流動変動が存在し、これらの変動が数百メートルの深部にて及ぶことが分かった。また、各流速成分の鉛直分布から、約250m以浅の表層では南西向きの流れが、それ以深では北向きの弱い逆流が存在し、さらに絶対流速に対する時間平均値および標準偏差の鉛直分布から、700mを超える深部でも予想以上に大きな周期的流動変動が存在することが示唆された。

キーワード：海洋深層水、駿河湾、石花海海盆、係留系、流動変動

1 海洋科学技術センター 〒237-0061 神奈川県横須賀市長島町2番地15
Japan Marine Science and Technology Center (2-15 Natsumachi-sho, Yokosuka, 237-0061 Japan)
2 株式会社エコニクス 〒004-0015 北海道札幌市厚別区下野幌テクノパーク1-2-14
Econixe (1-2-14 Technopark, Shimonopporo, Atsubetsu-ku, Sapporo, 004-0015 Japan)
3 科学技術振興事業団 （〒332-0012 埼玉県川口市本町4-1-8）
Japan Marine Science and Technology Center (4-1-8 Honmachi, Kawaguchi, 332-0012 Japan)
I. はじめに

静岡県では駿河湾における「海洋深層水」の有効利用事業が推進されており、2000年8月までに取水管の敷設工事を終了し、焼津（やいづ）沖の石花海（せのうみ）海盆における深度397mおよび深度687mに深層水取水口が設置された。深層水取水管の設計・敷設および深層水有効利用のためには、取水立地環境として取水海域の流動変動特性を事前に把握しておく必要がある。

駿河湾全体の表層流動については、これまでに巨視的な環流パターン等がかなり明らかとなっている（中村, 1972, 1982; Inaba, 1981; 稲葉, 1982など）。また、深部の流動については、湾中央部の駿河トラフ（Matsuyama et al., 1993など）において保係系を使った観測によって、深部の流動特性が解明されつつある。しかしながら、駿河湾の西部に位置する深層水取水海域である石花海海盆においては、これまで長期にわたる係留観測はほとんど行われておらず、特に深部の流動変動特性は未だよく分かっていない。

そこで、海洋科学技術センターは、静岡県による当事業計画の効率的な推進に資するため、1999年11月8日から2000年2月1日までの約3か月間、取水管工事着工以前の焼津沖深層水取水予定海域において、流動特性を把握することを目的として係留系による調査を実施した。係留系には、超音波多層流速計（ADCP）、超音波1点流速計（RCM-9）、および係留用水温塩分計（SBE16）を取り付け、表層から深層にわたる多層深度の流向・流速、水温、塩分の時系列データを計測した。本稿では、調査に使用した係留系の構成を説明するとともに、係留系によって取得した流向・流速データ等の解析結果に基づき、主に駿河湾深層水の取水海域における流動特性について考察する。

なお本稿では、「海洋深層水（略して深層水）」という用語は、資源利用の立場で、補償深度（大体200m程度）以深の海水の意味で用いている（中島, 1989; 高橋, 1999）。

2. 係留系の構成

図－1に、本調査に使用した係留系の構成概要図を示す。図－2に、駿河湾の海底地形および係留系

図－1 係留系の構成概要図

図－2 駿河湾の海底地形および係留系設置地点（係留地点：B3測点）
顕河湾深層水の取水海域における流動特性

設置地点を示す。係留系を設置した石花海海盆は特定の魚礁にはなっていないものの、湾内の近くには石花海堆など好魚場が多く漁船の通行頻度が多いと予想される。そこで、漁船の通過などに伴う係留系のトラブルを避けるため、また表層における激しい流動変動による係留系の傾斜や振動ノイズなどを極力避けるため、図－1 に示す通り、係留系のトップを開面から 400 m 程度まで深く海中に沈める中層ブライ方式とした。

トップブライには ADCP 専用シングラティックフロート (45 インチ・ボールブライ) を使用し、そのトップブライの中に超音波多層流速計 (RD 社ワークホース ADCP 75kHz) 1 台を上向きに取り付けた。この ADCP の上面が、水面下 400 m 程度の深度に保たれるように係留した。この超音波多層流速計 (ADCP) の計測項目は流速・流向、水温、水圧で、30 分間隔で鉛直 50 層の流向・流速を計測するようにパラメータ設定を行った。なお、トップブライには水中データ伝送用音響モード (LinkQuest 社 UWM2000) 1 台を取り付けている。

トップブライのすぐ下には、係留用水温塩分計 (SeaBird 社 SBE16) 1 台を取り付けた。この係留用水温塩分計の計測項目は電気伝導度、水温、水圧であり、30 分間隔で鉛直 50 層を計測するようにパラメータ設定を行った。また、超音波 1 点流速計 (Aanderaa 社 RCM-9) 2 台を、深度 560 m (RCM-9A) および 720 m (RCM-9B) 程度の箇所に 1 台ずつ取り付けた。この超音波 1 点流速計の計測項目は流向・流速、水温、電気伝導度、水圧で、30 分間隔で計測するようにパラメータ設定を行った。

深度 830 m 程度の箇所には、水中切離装置（日油技研工業㈱ M-III）2 台を並列に接続した。係留系の回収の際には、水中切離装置がうまく作動しないトラブルが少なくなないとされている。しかしながら、この並列接続の方法によれば、片方の水中切離装置が不作動の場合でも他方の水中切離装置を作動させることによって、2 台の水中切離装置ともに含めて係留系を回収することができる。

以上の計測機器等を基本的には軽量で伸び率の低いケプラーロープ（φ 10 mm）で繋ぎ、途中にチェーンを使ってガラス球ブライを取り付けた。ただし、係留系の下部におけるアンカー（約 1.3 ton の鉄製レールを利用して作った重り）と水中切離装置との間の部分には、アンカー投入時のショックを緩和するためにナイロンロープ（φ 18 mm）を使用した。

なお、係留系の構成に関する詳細については、文献を参照されたい（黒山ら，2000）。

3. 調査方法

前節の図 2 に示した通り、顕河湾深海係留系を石花海海盆の B3 測点（34°50.0′ N，138°26.0′ E、水深 870 m）に設置して、1999年11月8日から2000年2月1日まで約3ヶ月にわたる係留観測を実施した。前述のとおり、顕河湾深海係留系には超音波多層流速計（音響ドップラーフロー計・プロファイラー：ADCP）、超音波 1 点流速計および係留用水温塩分計を取り付けており、表層から深層にわたる多層の流向・流速および水温・塩分の時系列データを取得した。

係留系設置は1999年11月8日14時30分であった。係留系の設置および回収作業の際には日本海洋係附属の調査船である第五開洋丸（141 トン）を用船し、係留系の設置および回収作業には船尾に装備された A フレーム（クレーン）を使用した。係留系設置の際には、船を風上に向かって微速前進させながら、トップブライから投入して下流へ流しながら係留系構成部品を順次投入して最後にアンカーを投入した。その後、船に装備された DGPS（Differential Global Positioning System）を利用して正確な係留系設置地点の確認を行った。

係留系回収は2000年2月1日12時30分であった。係留系回収の際には、設置地点の真上に停止し船尾からコマンドを送って水中切離装置を作動させたのち、浮上してきた係留系を下部から甲板上に回収し、最後にトップブライを回収した。

さらに、下船後、焼津市の海洋科学技術センター海洋深層水分析研究棟において、係留していた各計測機器に記録された各データの解析を行った。
4. 調査結果および考察

図-3 による超音波多層流速計（ADCP）によって計測された各深度層における（a）東向き流速成分 u と（b）北向き流速成分 v の時系列を示す。上向き ADCP の場合、海面付近での乱れの影響によるコントミション層の存在により、海面から深度 30 m 程度までのデータは使えない。そこで、計測された鉛直 50 層のうち 10 層を選び、32, 40, 80, 120, 160, 200, 240, 280, 320, 360 m 深度層を図示している。また、図-4 には、超音波 1 点流速計（RCM-9 A）による 560 m 深度層における（a）東向き流速 u と（b）北向き流速 v の時系列を示す。図 5 には、超音波 1 点流速計（RCM-9 B）による

(a) East comp.

(b) North comp.

図-3 超音波多層流速計（ADCP）による各深度層における流速の時系列
（観測期間：1999年11月8日～2000年2月1日）
(a) 東向き流速成分 u (cm/s)
(b) 北向き流速成分 v (cm/s)
720 m 深度層における (a) 東向き流速 u と (b) 北向き流速 v の時系列を示す。図-3, 図-4 および図-5 において、全層の流速に半日周期および1日周期の潮汐変動が顕著に見られる。これらの変動は、特に240 m 層より浅い表層において顕著であるが、700 メートルを超す深部にまで及んでいることが分かる。

次に、図-3, 図-4 および図-5 について、もっと長周期の変動を調べる目的で、潮汐変動を除去するために1日移動平均を取ってみた。その結果と
図-6 超音波多層流速計（ADCP）による各深度層における流速スティックダイアグラム（1日移動平均結果）

図-7 超音波1点流速計（RCM-9(A)）による560m層における流速スティックダイアグラム（1日移動平均結果）

図-8 超音波1点流速計（RCM-9(B)）による720m層における流速スティックダイアグラム（1日移動平均結果）
して、各深度層における流動スティックダイアグラム（流速ベクトルの時系列）を、それぞれ図-6、図-7および図-8に示す（いずれの図も、右方向を東、上方向を北として、流速ベクトルを描いている）。1日移動平均流の持続的変化を見ると、240 m層以浅の表層において流速変動が大きく、数日から10日程度の周期で変動している。また表層では南西向きの強い流れが支配的であり、32 m層およそ40 m層では最大流速が約50 cm/sを超える時もある。一方、280 m層以深には北向きの弱い流れが存在している。

さらに、上記のADCP、RCM-9（A）、およびRCM-9（B）による流速データについて、約3カ月の全期間にわたる時間平均値を取った。まず図-9は、全期間にわたる各流速成分の時間平均値の鉛直分布である。各流速成分に深度による変化を見ると、まず東向き流速成分は、約300 m以浅で負値（つまり西向き流れで、深度60 mで極小値は-8.8 cm/s）を示し、それ以深でわずかに正値（つまり東向き流れで、深度330 mで極大値は0.5 cm/s）を示した後、さらに約500 m以深では流速値はほぼ0になる。一方、北向き流速成分は、約240 m以浅で負値（つまり南向き流れで、深度40 mで極小値は-6.3 cm/s）を示し、それ以深で正値（深度340 mで極大値1.8 cm/s、深度560 mで極小値0.5 cm/s）を示す。したがって、全期間にわたる時間平均流について、約250 m以浅の表層においては南西向きの強い流れがあるのに対して、それ以深ではほぼ北向きの弱い逆流が存在することが分かった。

次に各深度の流動の状況を比較するために、40、200、360、560、720 m層を選び出し、これら5層における絶対流速に関する計算法、すなわち全期間にわたる時間平均値、最大値、最小値、標準偏差、および変動係数（相対標準偏差）を計算した。図-10は、絶対流速に対する時間平均値、最大値、最小値の鉛直分布である。まず各層の時間平均値を見ると、深度とともに減少し、40 m層では16.5 cm/s、720 m層では4.5 cm/sである。図-10の絶対流速に対する時間平均値は、図-9の各流速成分に対する時間平均値に比べて、各深度層における値が大きい（約2倍程度）。これは、先述したように全体としての平均流が增加するため、図-9では流速を東西成分と南北成分に分けて時間平均を取った際に周期成分が消失されてためである。次に各層の最大値を見ると、表層で大きく40 m層において57.0 cm/s、200 m層において40.3 cm/sである。さらに、深度とともに減少するが、約350 m以深の深部では0に近づくのではなく、ほぼ一定値に漸近する傾向を示し、最深の720 m層で17.1 cm/sである。図示はしないが、絶対流速に対する標準偏差の鉛直分布も、時間平均値の鉛直分布と同様の傾向を示し、深度とともに減少するが、400 m程度以深の深部では0に近づくのではなく、ある一定値に漸近する傾向を示している。駿河湾深層水の取水深度（687 m）に近い720 m層では、平均値は4.5 cm/s、標準偏差は2.1 cm/s、最大値は17.1 cm/s、最小値は0であった。図-11に、絶対流速に対する変動係数（相対標準偏差）C.V.の鉛直分布を示す。こ
5. おわりに

駿河湾深層水の取水海域である石花海海盆に、超音波多層流速計（ADCP）などを取り付けた係留系を設置し、平成11年11月から平成12年2月まで約3ヶ月間にわたる係留観測を実施した。表層から深層にわたる多層深度で得られた流向・流速などの時系列データ解析から、半日周期および1日周期の潮汐変動の他に数日〜10日程度の周期的な
流動変動が存在し、これらの変動が700メートルを越す深部にまで及ぶことが明らかになった。また、係留系による調査期間の全平均を取って流速の鉛直分布を調べると、約250m以浅の表層では南西向きの強い流れが支配的であったが、それ以深の深部には北向きの弱い逆流が存在することが分かった。また、駅河湾深層水の取水深度（687m）に近い720m層においても絶対流速の時間平均値は約5cm/sであるとともに、内部波などの影響によって深部でも予想以上に大きな流動変動が存在することが示唆された。

なお、我々が同時期に実施した別の海域調査によって、石花海海盆の深部において流速および懸濁粒子濃度がやや高い傾向が明らかとなった。その原因としては、大きな河川から流れ込む土砂や海底急斜面の地滑り等による海中懸濁が考えられるが、さらに上述の深部における流動変動に伴う海底堆積物の巻き上げによる再懸濁が懸念される（坂本，1989；柳ら，1999）。今後、駅河湾深層水の取水口近くの海底境界層を中心に、濁りの分布状況を精査するとともに、その原因の究明を行う必要があると思われる。

参考文献
3) 稲葉栄生（1982）：駅河湾底層と黒潮流軸位置との関係、沿岸海洋研究ノート、19（2）、94-102.
4) 黒山順二・昌山清・高尾宏一・筒井浩之・豊田孝義・中島敏光（2000）：駅河湾深海係留系を使った石花海海底における流動変動の観測、海洋科学技術センター試験研究報告、42、127-137.
5) 坂本亘・川名吉一郎（1989）：海底高層度層の季節変化、水産海洋研究、53（1）、6-12.
6) 高橋正元（1999）：用語解説（第1回）海洋深層水、海洋深層水利用研究会ニュース、3（1）、14.
7) 中島敏光（1989）：用語解説・海洋深層水、JAMSTEC、1（1）、68.
8) 中村保昭（1972）：駅河湾の海況学的研探Ⅱ－湾奥西部表層における流動－、沿岸海洋研究ノート、9（2）、44-53.
9) 中村保昭（1982）：水産海洋学的見地からの駅河湾の海洋構造について、静岡県水産試験場研究報告、17、1-153.
10) 柳哲雄（1999）：東京湾海底谷における濁度の季節変動、8（3）、192-195.

（2001. 2. 5 受付、2001. 4. 19 受理）